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Introduction

Data

Methods Results

Multi-task algorithms are more robust than conventional pooled 
approaches  to the subject generalization problem. 

• Improved or steady accuracy with more subjects
• Consistent among datasets feature selection

Conclusion
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Problem
Improve subject generalization of passive 
economical Brain Computer Interfaces

Motivation: 
Exploit the trade off between noisy 
individual recordings and increased 
number of subjects

Advantages: 
Utilize knowledge shared between 
subjects during training
Extract patterns present in all subjects 
instead of explicit individuals

Berkeley Experiment 1

- 30 subjects
- One 5-minute session each
- Two types of stimuli during session

- Math, memorizing colors, think of items
- Listen to music, watch video ads, relax

- Cognitive state changes in the same session
- Classes: Mental activity or relaxation

Carnegie Mellon Experiment 2

- 9 subjects 
- Ten 2-minute sessions with MOOC videos
- Self-classified levels of confusion for each 

session
- Cognitive state changes between sessions
- Classes: Confused or not

1 https://www.kaggle.com/berkeley-biosense/synchronized-brainwave-dataset

Discriminative MTL[1]
Logistic regression with group sparsity constraint on the K 
coefficients of all subjects T
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2https://www.kaggle.com/wanghaohan/eeg-brain-wave-for-confusion

https://github.com/GiorgosPanagopoulos/Multi-task-Learning-for-
Commercial-Brain-Computer-Interfaces

Code

MTL methods perform better as the number of subjects increases

Generative MTL[2]
Bayesian estimation of coefficients’ prior distribution
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Example of subject variability
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(pooled)

Feature Coefficients

The sign of the regressed value determines the binary class
For a new subject a coefficient vector 𝑤𝑛 is sampled from 𝑁(𝜇, Σ)

Rows of W are the feature coefficients 𝑤𝑡 of each subject t
Each approach yields a different W:

The column average of multi-task W is the 𝑤𝑛 of a new subject n
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MTL uncovers patterns that comply with the field’s literature
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