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Abstract—In the field of Brain Computer Interfaces (BCIs),
one of the most crucial hindrance towards everyday applicab-
ility is the problem of subject-to-subject generalization. This
adheres to the fact that neural signals vary significantly across
subjects, rendering a subject calibration process necessary for
the pattern recognition mechanisms of a BCI to achieve a
notable performance. In the present work, we explore this
phenomenon on two open datasets from mental monitoring ex-
periments which utilized a commercial BCI device (Neurosky).
This passive BCI setting with economical hardware is one of
the must promising in terms of commercial appeal and hence it
has more potential to be employed by multiple subjects-users.
We visualize the inter subject variability problem and apply
machine learning methods commonly used in the BCI literat-
ure. Subsequently we employ multi-task learning algorithms,
setting each subject specific classification as a separate task.
The experiments reveal that multi-task approaches achieve
better accuracy with increasing number of subjects in contrast
to subject-invariant approaches, while providing insights that
are consistent among subjects and agree with the relevant
literature.

Keywords-Brain Computer Interfaces, Multi-task learning,
EEG

I. INTRODUCTION

A Brain Computer Interface, or BCI, is a device used

to form a communication pathway between a human’s or

animal’s brain and a computer. The device combines medical

imaging techniques, ranging from EEG to fMRI on the one

end, with machine learning and signal processing techniques

on the other, in order to extract patterns of a subject’s

brain activity and map them to specific actions or meanings.

One of the most persistent problems in the field lies in

the machine learning phase, where the substantial variance

between recordings of different subjects calls for subject

specific calibration, to enhance the accuracy of the classifier.

This enduring obstacle emanates from the fact that neural

signals are highly subject specific, which in term stems

from the mapping of cognitive functions to brain regions

being highly volatile between human beings. Because of this,

patterns inherent throughout all subjects are not exploited

as common ground. In contrast the parameters of the model

are tuned from scratch before the subject starts using it,

which has several drawbacks. In terms of usability, it is

time consuming and inconvenient, becoming a burden for

the commercial appeal of BCIs, especially for devices with

moist electrodes that already need rigorous preparation dur-

ing the electrode placement. From a scientific perspective,

a BCI is a potential source of meaningful insights on how

the brain works, where if generalization can not take place,

universal conclusions can not be derived. Although the need

for intensive and lengthy training has been alleviated [1] and

the BCI placement becomes more and more effortless with

commercial hardware [2], the problem of subject-to-subject

generalization can still be considered detrimental for both,

the commercial and the scientific usage of BCI.

We approach the problem from a multi-task learning per-

spective, showing that sharing knowledge between subjects

can prove beneficial towards subject-to-subject generaliza-

tion and reveal subject invariant patterns that agree with

the literature. We focus on passive BCI [3] where the

subjects observe a continuous stimulus, while the device

keeps track of their neural signals, using a commercial and

low-cost hardware. This combination has potentially sizable

commercial impact and a broad range of applications[4]. The

datasets employed are open and come from experiments run

in Berkeley1 and Carnegie Mellon2 using Neurosky device.

This device is one of the most portable BCIs in the market

with a cost around $100. On the other hand, it is one of the

weakest BCIs since it consists of only one dry sensor, placed

in the forehead, rendering capture patterns from other brain

areas nearly impossible and being very prone to noise. This,

combined with the difficulty of the mental monitoring task,

renders the problem at hand so challenging that baseline

approaches hardly surpass randomness [5].

Overall, the goal of the paper is twofold; the first is to

evaluate machine learning algorithms utilized in other ap-

proaches with expensive hardware, such as active (ex. motor

imagery) or reactive BCI (ex. P300 spellers) to a passive BCI

with economical hardware; the second is to highlight the

benefits of exploiting inter subject knowledge, using multi-

task learning. The paper is organized as follows. Section

2 provides a review on transfer learning applications in

Neuroimaging. Section 3 describes the multi-task learning

algorithms we employed and implementation details. In

1https://www.kaggle.com/wanghaohan/eeg-brain-wave-for-confusion
2https://www.kaggle.com/berkeley-biosense/synchronized-brainwave-

dataset
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section 4 the datasets are delineated, displaying the “curse”

of inter subject variability. Section 5 outlines the experi-

mental design and discusses the results. Finally, the paper is

concluded in Section 6, with future directions.

II. RELATED WORK

The first systematic approach to multi-task learning was

proposed through hierarchical bayesian inference [6] and

revolves around the idea that the parameter estimation of

a machine learning model is a task in itself, while the

estimation of the right bias term, which is shared throughout

all tasks and is crucial for generalization, can be approx-

imated using bayesian inference. The bias term estimation

represents the objective prior distribution for all relevant

tasks. A similar idea is employed to enhance the inter-

subject generalization capability of a BCI in [7], which is

one of the algorithms we employ in the experiments. Each

task corresponds to a subject and all tasks’ parameters stem

from the same prior Gaussian distribution. These parameters

can then further adapt to the subject itself. The same group

examined thoroughly transfer learning and its application

in BCI [8]. A feature decomposition process was added to

the aforementioned algorithm to take advantage the BCI’s

data structure. Results verify the subject-to-subject know-

ledge transfer is indeed beneficial. A joint prior connecting

subjects combined with knowledge on language models was

utilized in [9] to create a p300 based speller BCI that can

work accurately without lengthy calibration.

Multi output artificial neural networks can also be considered

a multi task learning algorithm. If each output unit is a

different task, then the internal representations of the neural

network e.g. the transformations of the data with the weights

in the hidden layers, are shared knowledge between all tasks

and hence contribute to perform better in each task [10].

Such settings have been used for prediction using clinical

recordings like in [11] with pneumonia risk assessment

and in [12], with patient’s length of in hospitalization,

mortality etc. A combination of neural networks and hier-

archical bayesian inference led to multi-task bayesian neural

networks with multiple levels of sharing between tasks,

like sharing parameter’s prior distributions or sharing the

parameters themselves [13], [14]. Such a network is tested

in [15] in the context of BCI to classify multiple cognitive

tasks and motor imagery assignment, surpassing the single

task approaches. In addition, Gaussian Processes (GP) were

utilized for multi task learning [16] and were critically

acclaimed, with extended theoretical examinations [17], [18]

and a broad range of applications, in the analysis of fMRI

data It is used in [19] to facilitate functional connectivity

estimation while classifying resting state. The multi task

approach yielded better generalization through sessions and

uncovered consistent brain connectivity graphs that could

be tallied to known cognitive networks. In [20] each task

adheres to classifying whether the subject is aroused by a

stimulus, given her/his fMRI recordings, using knowledge

transfer between subjects and explaining away variation that

is not shared. The methodology relies on having a primary

task which borrows knowledge from secondary ones, while

explaining away variation that is not shared. In order to

achieve generalization and subjectwise consistent pattern

extraction based on fMRI data in [21], the GP covariance

function is decomposed to intra-task and inter-task com-

ponent, restricting the latter to be close to the respective

average for all tasks. The results were evaluated based on

both, generalization in new subjects and reproducibility of

weight vectors through tasks in multiple runs compared with

single task classifiers.

One of the must popular approaches to multi-task learning

is based on regularized linear models, the traditional form

being a linear model with a regularization term consisting

of the parameters of all tasks [22]. The multi-task L12 norm

regularization was applied to simulated and real magneto-

encephalographic (MEG) recordings [23], achieving im-

proved generalization accuracy and uncovering meaningful

hidden patterns. The same group used multi task learning

for MEG [24] with elastic net regularization, each task

corresponding to a spatial unit e.g. a sensor. An adaptive

mixed norm regularization was used for P300 speller BCI

[25] to enhance classification accuracy and perform sensor

selection. In [26] a temporal multi-task model is used

to forecast MMSE and ADAS-Cog based on fMRI data

from ADNI dataset. Each time point regression served as

a different task and shared regularizations ensured common

feature selection, smoothness in consecutive time points and

time specific feature selection. Finally, joint feature selection

for fMRI data is performed via regularization for group-wise

and subject-wise sparsity in [27], surpassing group Lasso.

Sharing knowledge between subjects is not limited to learn-

ing algorithms though. It can be achieved in preprocessing

steps, such as sharing filters in Common Spatial Patterns

(CSP) [28] to reduce calibration time for motor imagery.

The effectiveness of this approach led to the examination

of several types of novel CSP regularizations and a the-

oretical framework to rely on [29]. In a similar fashion,

non-stationary directions of the data are transfered trough

subjects for motor imagery BCI in [30]. Transfer knowledge

for EEG based visual-spatial attention tasks is facilitated

in [31], creating a common dictionary for all subjects

and transferring resting state activity, which improved the

decoding efficiency and produced meaningful brain activa-

tions. The approaches using CSP have a solid mathematical

background and are very promising, however we can not

apply CSP in current work since our datasets consist only

of one sensor and its frequency components.

Finally, training weak classifiers on specific subjects and

classify a new one based on their ensemble, is also a form

of multi-task learning [32]. A combination of CSP filters

and Linear Discriminant Analysis (LDA) parameters was
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computed for each subject during training and a sparse

ensemble of them was utilized to achieve zero calibration

time for motor imagery assignment on a new subject in

[33]. In addition, a subject based ensemble is used for fMRI

classification in [34] with subject based kernel classifiers

and the total classification was formed by their weighted

combination.

Our approach diversifies from the ones addressed in the

aforementioned literature in several aspects. First of all, it

is based on a commercial and economic BCI. Data from

this type of hardware suffer numerous limitations and that

is why, to the best of our knowledge, multi-task learning

has not been applied yet on such data. Neurosky, has only

one channel. This effectively means traditional EEG work-

horses like ICA [35] and CSP [29] are out of scope. Since

mining for spatial patterns becomes meaningless, we have

to focus on temporal patterns in a device with substantially

inferior sampling rate and signal to noise ratio of clinical

BCIs. Another difference is that we apply this methodology

in a passive BCI. Passive BCIs exhibit high potential of

applicability in real life [4], but are overlooked due to

their challenging nature. More specifically, subjects do not

intentionally change their brain activity, which renders the

signal’s behavior obscure and hard to decode. Finally, a

substantial contrast between our work and the literature is the

purely mental nature of our classes, such as confusion and

mental burden. Classification of mental notions has proven

significantly harder, calling for longer periods of training and

fully subject adaptive classifiers [36], while it is significantly

more ambiguous and less explored than motor imagery [37]

or P300 spelling [9]. Thus the need for novel algorithms and

methodologies is prevalent for mental classes.

III. METHODS

Subject-invariant algorithms handle the data in a pooled

manner. This means that each input X ∈ R
F and output

Y ∈ R is treated by the classifier in a subject agnostic

manner, meaning without knowing which subject it belongs

to. In contrast, when training a multi-task algorithm, the X
and Y of each subject correspond to the input and output

of a specific task, as are depicted in Figure 3 for two

subjects. The evaluation phase is the same in both cases,

testing in unseen subjects. In a subject adaptive algorithm,

each task would be trained independently and evaluated

only in the same subject, thus we could think of multi-task

learning as a middle ground solution between pooled and

fully adaptive. We utilize two multi-task learning algorithms,

one discriminative and one generative.

A. Discriminative Model

The discriminative algorithm is a logistic regression with

fused regularization [38]

min
w,i

T∑

t=1

Nt∑

i=1

log(1+e(−Yt,i(Xt,iwt+ci)))+p1|W |2,1+pL2
|W |2F

(1)

Where T is the number of tasks, in our case subjects,

Nt, Xt,i ∈ RNtxF and Yt,i ∈ RN
t are the number of

samples, the input samples and the output labels for subject

t. F is the number of features per sample, in our case 9.

W ∈ RTxF is the matrix including the feature coefficients

of all tasks and Wt is the row of W that corresponds to the

coefficients for task t. Regularization coefficient p1 is set

to 1 after cross validation and pL2 is left to default.

The term |W |2,1 induces the group sparsity regularization,

which means the vectors of coefficients of all tasks are

constrained to share the same sparsity. In other words, the

feature selection for one task, must compromise with the

feature selection for all tasks. In this manner, features that

might achieve better accuracy for one subject but do not

fit well with the rest, are overlooked. Instead, features that

perform sufficiently well for all subjects are encouraged

and this is how knowledge is shared between subjects. The

second regularization term is a traditional L2-norm penalty

for sparsity withing each task. The optimization of the

function is achieved through accelerating gradient descent

[39]. In order to assess the generalization to new subjects,

we take the average of all subjects’ coefficient vectors to

serve as the coefficients for an one. The MALSAR [40]

implementation of the method was used to perform the

experiments in MATLAB.

B. Generative Model

The generative model is based on a Bayesian approach

where the prior distribution of the coefficients is shared

between subjects [7]. More specifically, the coefficient vec-

tors of all subjects wt ∈ RF are assumed to stem from the

same distribution p(W ) ∼ N(μ,Σ) . Σ and μ are inferred

by maximizing the posterior probability given the data of all

tasks t

p(W ;X,Y, σ2) ∼
∏

t∈T
p(yt, Xt;wt)p(wt) (2)

which is the same as minimizing the negative log-posterior

min
W,μ,Σ

1

σ2

∑

t ∈T
||Xtwt−yt||2+ 1

2

∑

t∈T
(wt−μ)TΣ−1(wt−μ)+

T

2
logdet(Σ)

(3)

The optimization algorithm employed is minimized

alternatively with respect to W and (μ,Σ). It is imperative
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to underline the second term of equation (3), which

signifies that the precision matrix Σ−1 acts as a regulator

for feature coefficients. This means that, since learning Σ
requires training data from all tasks, the feature selection

process will adhere to the patterns of all tasks, much

like the algorithm in the discriminative case. Since this is

regression, we use it for classification by taking the sign of

the regressed value.

Once the parameters of the prior distribution are derived,

the model generalizes to a new subject by deriving a new

coefficient vector from that prior distribution to act as

a starting point and then it adapts to the new subject’s

data using simple regression. For the current work, the

model is adapted in 10% of the new subject’s data, and

evaluate in the rest 90%, because we want to evaluate the

generalization capability through subjects. The code3 that

accompanies [7] was employed for the implementation of

this algorithm.

The choice of the classifiers used with the pooled

approach and their hyper parameters was based on extended

surveys on machine learning for BCI [41][42]. The R

statistical language and the caret package [43] were utilized

for these algorithms and the ensemble model. The code

pipeline to reproduce the analysis is open on github4.

IV. DATASETS

Neurosky was used as a recording device in both experi-

ments. This BCI provides recordings of raw signal in 512Hz

and magnitudes of frequency bands in 8Hz. The bands are

Delta (0.5 - 2.75Hz), Theta (3.5 - 6.75Hz), Low-alpha or

Alpha1 (7.5 - 9.25Hz), High-alpha or Alpha2 (10 - 11.75Hz),

Low-beta or Beta1 (13 - 16.75Hz), High-beta or Beta2 (18

- 29.75Hz), Low-gamma or Gamma1 (31 - 39.75Hz), and

mid-gamma or Gamma2 (41 - 49.75Hz). Measurements of

attention and meditation are also provided, but in the current

work we refrain from employing them, as we want to use

information that can be found in other types of BCIs, without

leaning on metrics extracted from the BCI’s software.

A. CMU Dataset

The dataset from Carnegie Mellon consists of a study with

10 college students that watched Massively Open Online

Course videos while being recorded. They watched two

types of videos, one rudimentary and one more challenging

and after each session they rated their level of confusion. 10

different 2-minute videos where shown to each student and

a self-assessed confusion level is assigned by the subjects

themselves. The recordings are resampled by the authors in

2 Hz. Figure 1 contains boxplots of each subject’s features

3http://brain-computer-interfaces.net/
4https://github.com/GiorgosPanagopoulos/Multi-task-Learning-for-

Commercial-Brain-Computer-Interfaces

distribution, distinguishing the confused and non-confused

cases side by side. Subject 6 was removed from the plot and

the experiments due to massive differences with the rest of

the subjects, which might be caused by hardware malfunc-

tion. We have scaled the features of the whole dataset to [0,1]

to allow for inter-subject comparisons and removed outliers

that spanned outside of 0.025 and 0.975 to produce a cleaner

plot. We did not scale each subject separately because the

boxplots would then be relative and the differences between

subjects would not be clear. Examining it one can easily

identify a pattern prevalent amongst most cases, especially

in the frequency domain features. A subject’s distributions

display consistently higher values during confused cases.

Although a subject specific classifier can take advantage

of this, separating between cases of different subjects can

be impossible. For example, subject 9 confused Gamma2

could resemble more of subject’s 7 non-confused rather then

the confused. Thus a subject-agnostic classifier could have

severe trouble distinguishing between these two. Numerous

underlying subject-relative patterns may exist but are not

visible through simple visualization or statistical hypothesis

tests. A naive Bayes non subject adaptive classification

achieved 51% accuracy in this dataset [44].

B. Berkeley Dataset

The dataset from the experiment in Berkeley shares a lot

of similarities with the one from CMU, in that the hardware

is the same, the subjects were students, and each subject was

presented videos with certain stimuli to identify and decode

changes in the brain signals. That said, there are also certain

differences addressing the type of stimuli and the structure

of the experiment. The experiment is cross sectional, in

that although the subjects are divided in two groups, all of

them undergo all types of similar stimuli. Each experimental

session, which lasts roughly five minutes, includes different

types of stimulus, including asking to blink, doing math,

listening to music, watching a video, thinking of a certain

type of items and memorizing color blocks always in that

order. The tasks that do not require visual aid are done with

eyes closed. The stimuli’s between the two groups are not

always the same, but are of the same type. Having a more

complex set of stimuli, and since each one is brief and

just seconds away from each other, this dataset might be

more challenging the the former one. Each instance in the

dataset corresponds roughly to 1 second, although it is not

constant. A list of 512 raw signal values is given in every

instance, which is averaged to refrain from having multiple

rows with only one column different. Furthermore we filter

out Neurosky values with signal quality indicator different

than perfect. The binary classification task we will examine

is to distinguish whether the subject performs an active or

passive action e.g. watching a video, listening to music,

relaxing versus solving math, memorizing and coming up

with items. This task can simulate the notion of mental
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Figure 1: Boxplots of the distribution of each feature,

for each subject, distinguishing between confused and non

confused cases (CMU Dataset).

burden and binary classification that is also present in the

CMU dataset. In addition, in this manner, we alleviate the

factor of having eyes closed or open, which effects neurosky

values, since both classes contain activities with eyes closed

and open. Similar to CMU case, we removed 5% of the

data that corresponded to outliers and scaled it. Figure 2

gives an overview of the separate distributions for all 30

subjects, distinguishing between subjects that saw video 1

and video 2 and scaled to [0,1]. In contrast with the CMU

case, there is no obvious universal pattern to distinguish

between classes for each subject. Still though, the inter-

subject variability problem is much more prevalent here,

meaning that confusing non active values of a subject with

active of another subject is much easier for all features.

V. EXPERIMENT

The performance of pooled and multi-task learning meth-

ods is evaluated in both datasets using classification accur-

acy. Since we want to estimate the generalization through

subjects, we apply 10-fold cross validation, where each fold

corresponds to specific subjects’ recordings, so that there

is no overlap between the train and the test set subjects.

Figure 2: Boxplots of the distribution of each feature, for

each subject, distinguishing between Active and Passive

stimuli (Berkeley Dataset).

Figure 3: Difference between training using a pooled ap-

proach and a multi-task learning algorithm.

Furthermore, we use subsets of the Berkeley dataset in order

to evaluate how the performance of the algorithms change

with the addition of more subjects. To do this, we calculate

the 10-fold cross validation accuracy in three subsets of the

dataset, with 10 subjects each, and then take the average.

The results of the experiments can be seen in Table I.

For the CMU dataset, which had a baseline of 51%[5], the

must successful classifiers are the ones that perform well
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CMU (9 subjects) Berkeley (10 subjects) Berkeley (30 subjects)
Linear Discriminant Analysis [42] 63.92 63.61 57.73

Shrinkage Linear Discriminant Analysis [42] 63.92 63.61 57.73
Linear Support Vector Machine [42] 64.16 64.15 56.21

Multi Layer Perceptron [45] 58.43 55.63 45.90
Radial Basis Neural Network [46] 35.84 35.85 48.71
Learning Vector Quantization [47] 59.94 61.48 55.67

K Nearest Neighbors [48] 55.21 54.48 53.03
Decision Tree 64.28 64.27 54.23

Random Forest 63.52 63.66 57.83
Extreme Boosting 63.14 61.43 55.27

Ensemble [49] 62.69 59.91 54.34
Logistic Regression l21 [38] 51.29 64.15 64.16

Bayesian Shared Prior [7] 52.80 63.58 63.42

Table I: Accuracy percentage for each algorithm and dataset. The most accurate in each dataset are highlighted. The algorithms

in bold are multi-task learning algorithms.

with traditional BCI data, namely LDA, SVM and Decision

Tree, but the multi-task learning approaches perform near to

random. The same algorithms are successful with a subset

of 10 subjects of the Berkeley dataset. However, the multi-

task learning algorithms seem to perform equally well in

this case. This might stem from the fact that the CMU

dataset has more subject specific information, since each

subject run 10 sessions instead of one, leaving less room

for inter subject information and more for subject specific.

In contrast, the Berkeley dataset included less information

from one subject, but more subjects. The advantage of

multi-task learning becomes prevalent in the results of the

whole Berkeley dataset. As the number of subjects increases,

pooled approaches undergo a significant drop in accuracy,

while both multi-task learning approaches keep their descent

accuracy. The accuracy of logistic regression with L2,1 norm

even increases by a small percentage. This indicates the

ability and robustness of these methods and verifies the

fundamental multi-task learning theorem [6], which states

that it becomes increasingly efficient with the number of

tasks. Since our BCI setting aims for mass appeal, the

number of subjects-users will be substantial, which in turn

means that the model will become increasingly better as

more people use it. This fact highlights the main reason why

multi-task learning is suitable in this case study. Moreover,

the heatmaps in figures 4 and 5 indicate the importance

of features according to subject-invariant and multi-task

algorithms. The darker the color, the less important was

the feature for classification. As is prevalent, the multi-task

algorithm has indicated roughly the same features for both

datasets, in contrast with subject-invariant algorithms like

Random Forest and LVQ. The highlighted Delta and Theta

frequency features, verify previous work on mental activity

analysis based on EEG [44] [50].

VI. CONCLUSION AND FUTURE WORK

In this work, we examined the efficiency of multi-task

learning approaches for subject-to-subject generalization in

Figure 4: Feature selection of subject-invariant algorithms

Figure 5: Weights Proportions of multi-task learning al-

gorithm

mental monitoring using commercial EEG hardware. Al-

gorithms used with expensive EEG hardware for active

or reactive BCIs, were applied for the first time towards

economic, passive BCI and were compared with multi-task

learning approaches. The experiments revealed that multi-

task algorithms can perform equally well with the state of

the art for limited number subjects and demonstrate consid-

erable robustness, or even enhancement, when the number

of subjects increases, where the pooled approaches suffer

from considerable drop in accuracy. In addition, they extract

consistently features that agree with the domain literature.
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Given that our BCI framework targets commercial settings

with massive usage, the multi-task methodology seems ideal

to increase the generalization capability of the BCI between

users and alleviate the subject specific calibration problem.

For future work, a first step is to evaluate the accuracy of

the multi-task learning models to new data coming from

subjects in the training set, instead of new unseen subjects

and compare it with fully adaptive approaches. Moreover,

dynamic algorithms that take advantage of the sequential

nature of the recordings, such as Hidden Markov Models and

Recurrent Neural Networks, need to be examined, together

with their multi-task counterparts. Furthermore, the addition

of datasets with elevated number of subjects is essential,

to explore how much the multi-task methods improve with

more tasks. Finally, experiments with datasets from different

commercial BCI devices are also a meaningful extension, to

argue about the robustness of the methodology throughout

different hardware.
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