
DiffuGreedy: An Influence Maximization
Algorithm based on Diffusion Cascades

George Panagopoulos1, Fragkiskos D. Malliaros2, and Michalis Vazirgiannis1,3

1 Ecole Polytechnique, Palaiseau, France,
{george.panagopoulos,mvazirg}@polytechnique.edu

2 CentraleSupélec and Inria Saclay, Gif-sur-Yvette, France
fragkiskos.malliaros@centralesupelec.fr

3 Athens University of Economics and Business, Greece

Abstract. Finding a set of nodes that maximizes the spread in a net-
work, known as the influence maximization problem, has been addressed
from multiple angles throughout the literature. Traditional solutions fo-
cus on the algorithmic aspect of the problem and are based solely on
static networks. However, with the emergence of several complementary
data, such as the network’s temporal changes and the diffusion cascades
taking place over it, novel methods have been proposed with promising
results. Here, we introduce a simple yet effective algorithm that combines
the algorithmic methodology with the diffusion cascades. We compare it
with four different prevalent influence maximization approaches, on a
large scale Chinese microblogging dataset. More specifically, for com-
parison, we employ methods that derive the seed set using the static
network, the temporal network, the diffusion cascades, and their combi-
nation. A set of diffusion cascades from the latter part of the dataset is
set aside for evaluation. Our method outperforms the rest in both quality
of the seed set and computational efficiency.

Keywords: influence maximization, information spreading, large-scale
network analysis

1 Introduction

Albeit the massive amount of work over this problem over the past 15 years,
influence maximization (IM) remains the holy grail of social network analysis.
The problem, at its core, is to find a set of nodes that would infect the largest
possible part of the network, if a spreading process started from them. It is
proven to be NP-hard, but a greedy algorithm [11] can get at least as close
as (1-1/e) to the optimum, under the two most prevalent spreading models,
the independent cascade (IC) and the linear threshold (LT). The edge weights
represent the probability of influence in IC and the amount of influence in LT.
Typically, IM algorithms work with uniform or degree-based edge weights. This
renders their spreading estimation wildly divergent from the actual spreading [8],
due to the complexity and diversity that governs spreading processes [25]. To



2 George Panagopoulos et al.

this end, some methods focus on learning the transmission probabilities between
nodes using real diffusion cascades [22]. This research branch is divided into
models that use the cascades to define an inferred network [18] or to adjust the
edge weights of an existing underlying network [7]. An example of the former is
to infer a transmission probability between two news blogs based on how often
and fast one copies the other, while an example of the latter is defining the
strength of a follow relationship in twitter based on how many times one node
retweeted the other. IM algorithms can then run on such inferred or weighted [8]
networks to derive the seed set. Although these methods tend to approximate
real spreading better, they suffer from issues of scalability and overfitting.

In this work, we propose DiffuGreedy, an algorithm based on SimuGreedy
[11] that utilizes the real diffusion cascades instead of simulations over the net-
work. Particularly, it follows the same hill climbing manner to construct the seed
set iteratively, but the computation of the marginal gain is based on a candi-
date seed’s most suitable diffusion cascade. This function is submodular, which
allows us to retain the theoretical guarantees. To showcase the effectiveness of
our method, we employ the temporal Sina Weibo follower network (1.7m nodes,
400m edges), that spans 32 days and is accompanied with the retweet cascades
of that time span. We keep the diffusion cascades and the network of the first
25 days as the train set and the last week as the test set. We use four different
IM approaches in the train set for comparison with DiffuGreedy. The first
is ranking the nodes by k-core decomposition on the follower network, which
has indicated strong correlations with influence [15]. Secondly, we employ IMM
[23], one of the fastest IM algorithms, to extract a seed set efficiently from the
follower network as is formed at the end of the training set. The third approach
utilizes NetRate [18] to infer a network from the diffusion cascades in the train
set, and applies PMIA [3] to perform IM on it. In the final method, we use the
diffusion cascades to weigh the follow edges proportionally to the nodes’ activity
and apply SimPath [9] on the resulting network.

It should be noted that a comparison between all these approaches has not
been attempted in the literature before, to the best of our knowledge. This can
be due to the lack of a common realistic evaluation methodology. Methods that
work on static networks are evaluated based on their computational time and
the estimated influence spread. On the other hand, diffusion learning methods
are evaluated based on the behavior of the chosen seed set in unseen cascades.
We deem the latter more realistic, and we choose to validate our seed set using
the number of distinct nodes influenced by it in the test set [5]. The results
indicate that Diffusion Greedy and its CELF counterpart clearly outperform the
rest in terms of the seed set’s influence spread in the test set. In addition, the
CELF approach is an order of magnitude faster to the second fastest method.
Finally, we notice that the methods based on k-core and NetRate perform
adequately, unlike the IMM. The paper is organized as follows. Section 2 is
a brief literature review on influence maximization. Section 3 delineates some
state of the art influence maximization methods we employed for our comparative
analysis. Section 4 describes the new algorithm we propose. Section 5 presents the



DiffuGreedy 3

dataset and the results of our experiments, along with insights and justifications.
The paper concludes in Section 6 with a contribution synopsis and suggestions
for future work.

2 Related Work

The basis of most IM algorithms is SimuGreedy [11]. Starting with an empty
seed set, the algorithm adds in the set the node that provides the best marginal
gain i.e. the increase of the set’s influence spread, in each iteration. Due to the
monotonicity and submodularity of the influence spread function under the two
diffusion models, the algorithm is guaranteed to reach a near optimal solution.
The most time-consuming part of SimuGreedy is the influence spread estima-
tion, which has proven to be P-hard [3]. Since the diffusion models are stochastic,
all possible paths of influence need to be taken into account proportionally to
their probability, which is not feasible, thus Monte Carlo simulations are em-
ployed. Most attempts to improve the algorithm focus on that part. CELF [13]
capitalizes on the submodularity of a node’s marginal gain, which can only di-
minish as the seed set grows. This means that if a candidate seed’s marginal
gain is higher then what the rest candidates had in the previous iteration, it is
higher at the current iteration as well, hence removing the need to recompute
the marginal gain of all candidates. PMIA [3] is a heuristic approach devel-
oped for the IC model, and it is based on the maximum influence in and out
arborescence (MIIA and MIOA) of every node. This is the union of all max-
imum influence paths that end up or start from that node. The key part of
the algorithm is that paths with probability under a certain threshold are re-
moved, assuming that influence is mostly local. SimPath [9] is also based on the
path-pruning idea, but for the LT, computing the influence spread of a node by
summing the probabilities of paths that start from it. Although providing a sub-
stantial speedup, those heuristic methods do not retain theoretical guarantees,
in contrast to sketch-based algorithms. The idea of sketch-based approaches is
to create several instances of the network that represent varying outcomes of
the edge probabilities beforehand and use them to estimate influence spread of
a seed set. SKIM is an example of sketch-based IM[4], which alleviates the need
for Monte Carlo simulations, achieving extreme acceleration with (1 − 1

e − ε)
approximate guarantees, where ε is a trade-off between accuracy and efficiency.
An alternative and faster sketch based methodology with the same theoretical
guarantees is based on Reverse Reachable (RR) sets [24]. An RR set of a node
consists of other nodes that can influence it. After generating a sufficient number
of RR sets for random nodes, the optimum seed set can be derived by selecting
the nodes that cover their majority. The intuition is that the frequency of a
node’s appearance in the RR sets is analogous to its influence.

While the previous algorithms work with a static network, there’s a growing
literature dedicated to IM based on diffusion cascades. A diffusion cascade is a
series of events that takes place over the network and indicates how information
spreads in it, e.g. a tweet and its list of retweets. The first model that utilized



4 George Panagopoulos et al.

real diffusion cascades for IM, attempted to learn the transmission probabilities
between nodes in IC [22]. The model uses survival analysis to express the prob-
ability of a node getting influenced in the course of a cascade, and it is solved
using an EM algorithm. The same group proposed learning an extension of IC
in continuous time (CTIC) [21]. CTIC extends traditional IC, by defining the
diffusion probability between two nodes analogous to the number of times one
node was influenced by the other, as well as the time it took for the latter to get
influenced by the former. The intuition behind this is that the longer it takes
for a node to copy an action the less likely it is to copy it. NetRate [18] is
a seminal algorithm that steps on both aforementioned works. It is based on
similar modeling as [22], but it learns the transmission delays between nodes.
NetRate can be used to infer how the nodes of the cascades are connected when
the underlying network is not available. Subsequently, time-constrained IM can
run on that inferred network, to give an estimate of the most influential users
[19, 5], solely based on the cascades. A similar line of work, but with a different
purpose, is diffusion cascade learning [1]. These machine learning models use
cascades to predict whether a node will get infected or not [17], or the size of
the cascade [14] when a cascade has already started. In the intersection of the
two aforementioned approaches, lie methods that use both, the follower network
and the diffusion cascades. A characteristic example is the credit distribution
model [8]. Whenever a node u copies a node v in the diffusion cascades, credits
are given to v and to the nodes that v copied. The influence spread of a seed
set is the total influence credit of its seeds and is estimated efficiently, by al-
ternating between credit estimations from the action logs and CELF. A simpler
approach is to weigh the edges of the graph analogously to the activity of the
nodes, e.g. how many times v has copied u in the cascades [7]. Subsequently, an
IM algorithm can run on this weighted network.

All aforementioned approaches, though differing methodologically, address
the same problem. However, their evaluation methods are quite deviant. IM
algorithms on static networks are evaluated based on their estimated spreading
and time efficiency. These methods totally overlook the real spreading dynamics
of the network, as they focus on the problem from a more algorithmic than
data-driven perspective. In some cases, epidemic simulations like SIR and SIS
are utilized to give an estimate of a seed set’s spreading in the network [15].
However, these models suffer from oversimplifying assumptions [16] and overlook
several important characteristics of real diffusion cascades [6]. Moreover, their
spreading estimate has proved inaccurate compared to actual diffusions that take
place over the network [20]. Hence, although epidemic models might be a valid
choice in the absence of diffusion data, in our case, we can form a more realistic
ground truth based on the diffusions. Even in this case, however, evaluation is not
straightforward. An erroneous example is representing the spread of a seed set in
the test set by the sum of the average size of each seed’s test cascades [26]. This
is inherently problematic because large cascades from individual seeds do not
guarantee a large combined spread. A similar fault occurs when evaluating a seed
set based on each individual seed’s follows, mentions, retweets, and tweets [10].



DiffuGreedy 5

Instead, our evaluation tactic is based on the number of distinct nodes influenced
in the test set, by the seed set [5]. Although not devoid of assumptions, it is the
closest and most objective measure of a seed set’s influence over a network at a
given time span.

3 Influence Maximization Analysis

In this section, we describe the analytical framework we followed to apply dif-
ferent approaches of IM on the same dataset, which is comprised of a temporal
network and diffusion cascades. As mentioned above, we split the dataset in the
train and test set. The train set corresponds to the diffusion cascades and the
follow relationships that took place during the first 25 days, as well as the ini-
tial follower graph which is formed before the first day of crawling. The test set
consists of the last week’s diffusion cascades. In the train set, we utilize four dif-
ferent IM techniques to derive seed sets for comparison with the seed set derived
by the proposed DiffuGreedy (described in Sec. 4). A general overview of the
methodology can be seen in Figure 1. Below we analyze each technique and how
we applied it.

3.1 Ranking by K-core decomposition

K-core decomposition has proven a strong reliable predictor of influence in pre-
vious studies [12, 15]. The K-core of a network is the maximal subgraph such
that each vertex has at least K degree. As a proxy for IM, we can rank the nodes
based on the maximum K-core they belong to, i.e. their coreness, and take the
top as a seed set.

3.2 Influence Maximization via Martingales

As a representative to classic IM approaches, we use IMM, an algorithm based
on the aforementioned RR sets, to derive the seed set from the follower network.
This is a network of more than 95 million edges, so efficiency is of utmost im-
portance. The most important advantage of IMM is that, in contrast with the
rest of RR -based algorithms, it derives RR sets that depend on one another.
As a result, the number of RR sets is diminished dramatically. In addition, it
achieves a theoretical guarantee of ((1−1/e)/(1+ε)2) using martingale analysis.
The network is weighted using weighted cascade [11] and the parameter ε, which
governs the trade-off between speed and accuracy, is set to 0.1.

3.3 PMIA on the NetRate network

To perform IM based exclusively on the diffusion cascades, we employ NetRate
[18] to infer the transmission rates between users in the train set. This can,
in turn, define a new network with edge weights proportional to the inferred
rates. The size of the inferred network needs to be very limited to satisfy the



6 George Panagopoulos et al.

Train Test

D
iff
u
s
io
n

C
a
s
c
a
d
e
s

F
o
ll
o
w
e
r
N
e
t
w
o
r
k

NETRATE &
PMIA

DIFFU
GREEDY

IMM

K-cores

Distinct Nodes
Influenced

(Days)

DATABASED
& SIMPATH

Fig. 1. An overview of the models we employed and which data they utilize. The upper
quadrants correspond to diffusion cascades and the lower to the follow relationships
established in time. The left quadrants belong to the train set and the right to the test
set. Each network represents a different type of data. The static follower network is
formed at the last day of the training set, so it is under the vertical axis. Each rectangle
represents a different method, and its position indicates which type of data it is based
on.

computational demands of NetRate. Hence we follow the literature [26] and
filter the cascades to keep only the most important nodes. In our experiments,
degree proved to produce the most effective diffusion network. We filter all the
cascades to remove nodes, either starting or participating in the cascade, that
do not belong to the top 3000 nodes. Having computed the network and its
transmission rates, we tried to use InfluMax, which is the archetype algorithm
for continuous-time IM. However, NetRate’s inferred transmission rates that
exceeded 10−6 were a mere 50 out of the 37937 inferred edges. Instead, we used
PMIA [3] on the diffusion network with weights defined by weighted cascade and
pruning parameter θ = 1/320. Although inferior to InfluMax, it has served as a
method of comparison [19] and provides a more then descent approximation to
SimuGreedy. Moreover, PMIA is based on IC, which is closer to NetRate’s
continuous-time IC then LT. Finally, since the diffusion network is small the
computational requirements were minuscule.

3.4 SimPath on the DataBased weighted network

To combine the information of the temporal network with the diffusion cascades,
we employed an edge weighting technique [7], which belongs to the DataBased



DiffuGreedy 7

approaches [8]. We assume that a node u copies a node v, whenever u appears
after v in a diffusion cascade and the time that u started following v is before
the cascade’s initiation. The edge weight is defined as:

Ev,u =
Av2u

Av
× e−

D̄tv,u
δ , (1)

where Av2u is the number of times u copied v, Av is the total number of tweets
and retweets of v, and D̄tv,u is the average time that takes for u to copy v.
The first term captures the relationship’s strength while the second is analogous
to its speed and depicts the exponential decay of influence in time [21, 7]. The
parameter δ facilitates containing the second term over 0 and is set empirically
to 1000. The resulting network is in the scale of 1 million edges, because their
overwhelming majority had zero weight. We perform IM using SimPath with
pruning parameter η = 0.01 .

4 The DiffuGreedy Algorithm

In this section, we propose a new influence maximization algorithm that utilizes
the diffusion cascades in the train set to extract a seed set. The basic idea is
to use the standard SimuGreedy algorithm [11], but substitute the candidate
seed’s influence spread estimation, with a summary of the seed’s diffusion cas-
cades. The algorithm can iteratively build an influence spread network, using the
most suitable seed in each iteration and its final size represents the cumulative
influence spread of the seed set. The main difference with SimuGreedy lies in
the calculation of a seed’s influence spread. In the original algorithm, it is com-
puted using Monte Carlo simulations of a diffusion process that starts from that
seed. In our case, we substitute this with an estimate from the list of diffusion
cascades that the node has initiated in the train set, for brevity’s sake the node’s
train cascades. We define a node’s influence spread as the node’s train cascade
that provides the highest marginal gain. Initially we experimented by using the
train cascade with the median marginal gain,as a more objective estimate, or
the number of distinct nodes in the node’s train cascades. These approaches
performed worse in our experiments, hence we kept the definition based on the
cascade with the highest marginal gain. If our definition of influence spread is
submodular, we can retain the (1 − 1/e) theoretical guarantee [11]. Below we
provide the proof of submodularity and the algorithm.

Theorem 1. Computing the influence spread of a candidate seed using the dif-
fusion cascade that maximizes the set’s marginal gain, is a submodular function.

Proof. The influence spread of a node u at step t is represented by its train
diffusion cascade with the highest marginal gain at that step, ctu. If another
node v is added to the seed set at step t, the influence spread of ctu at t+ 1 can
only be diminished, due to overlaps with v’s influence spread. If ctu has a high
overlap with v, then another one of u’s cascades will be used, let ct+1

u , in order to



8 George Panagopoulos et al.

Algorithm 1 Find the seed’s cascade with maximum marginal gain

procedure MarginalGain(final spread,seed cascades)
2: set max gain← −1, casc idx← −1

for casc← 0; casc < size(seed cascades); casc + + do
4: marginal gain← size(final spread ∪ seed cascades[casc]))

if marginal gain > max gain then
6: max gain← marginal gain

casc idx← casc
8: return max gain, casc idx

Algorithm 2 Influence maximization using nodes’ diffusion cascades

procedure DiffuGreedy(node cascades,seed set size)
2: seed sed← [], final spread← ∅

while size(seed set) < seed set size do
4: set max seed = −1,max gain = 0,max cascade = −1

for seed = 0; seed < size(node cascades); seed + + do
6: marginal gain, cascade idx = MarginalGain(final spread,node cascades[seed])

if marginal gain > max gain then
8: max gain← marginal gain

max seed← seed
10: max cascade← cascade idx

final spread← final spread ∪ node cascades[max seed][max cascade])
12: seed sed.insert(max seed)

delete node cascades[max seed]

14: return size(influence spread)

maximize marginal gain at step t+ 1. Since we always choose the cascade with
the maximal marginal gain, ctu had larger marginal gain than ct+1

u at step t. In
addition, by definition, a cascade’s marginal gain can only diminish or stay the
same as the seed set grows. Thus, ct+1

u at t+1 will always have smaller marginal
gain then what ctu had at t, whether it is the same cascade or not, which is to
be shown.

The complexity of DiffuGreedy is O(KV C), where K is the size of the seed
set, V is the number of nodes that initiated a cascade and C is the average size of
cascades. Since the marginal gain estimation is submodular, we can utilize CELF,
which does not change the worst case complexity, but has proven to accelerate
greedy [13]. We do not add the Diffusion CELF here due to space limitations,
but its derivation is similar to the way CELF is derived from SimuGreedy
[13]. It should be noted here, that although SimuGreedy and CELF estimate
the same marginal gains, the final seed set may differ, because of multiple nodes
having the same gain and each algorithm choosing based on different seed orders.
This results in Diffusion CELF having a slightly inferior performance in our
experiments.



DiffuGreedy 9

5 Experiments

5.1 Data

We apply our methodology in the Sina Weibo dataset [27], a network consisting
of more than 1.7 million nodes and 0.4 billion edges, accompanied by a set of
300,000 retweet cascades. The actual expanding follower network is given for
a time span of 32 days (2012.9.28 to 2012.10.29), throughout which, almost 10
million new follow relationships occurred. The diffusion cascades are gathered by
the most popular of the past 1,000 tweets of each node in the network, and they
date back since the year 2009. Since our methodology relies on the intersection
of the follower network and the retweet cascades, we cannot utilize the cascades
before 2012.9.28, as we do not know the structure of the follower network at
that time. Concurrently, we can not use the nodes in the network that are not
present in the retweet cascades, because we have no information about their
interactions. We thus extract the diffusion cascades of those 32 days and remove
nodes from the network that are not present in these cascades. That results in a
network of 641,575 nodes, with 95,272,167 edges and 18,652 cascades. We split
the cascades into training (14,555) and testing (4,097).

5.2 Results

As mentioned above, our evaluation method is based on the number of distinct
nodes influenced (DNI) by the seed set in the test set. We consider influenced,
every node that participates in a test set diffusion initiated from one of the pre-
dicted seeds. Since we measure the size of the distinct set, potential overlaps
between diffusions of different seeds are taken into account. The DNI of each
method are shown in Figure 2 and Table 1 shows the average DNI of each method
throughout all seed set sizes. DiffuGreedy and DiffuCELF clearly outper-
form the other approaches by a considerable gap. In addition, DiffuCELF takes
only 16 seconds, which is almost 40 times faster then k-core decomposition, and
1000 times faster then DiffuGreedy.

One important observation is the failure of the algorithmic IM approach.
Only 15 out of the 100 seeds selected by IMM had started at least one cascade
in the test set, and their spread was scant. This can be attributed to a lot of follow
relationships not translating into retweets, a well-known phenomenon [2] plays
a vital role in social influence analysis. Regarding SimPath in the databased
weighted network, its failure might stem from the data. More specifically, we
observed that the follower networks of retweet cascades are extremely sparse
i.e. the ratio between the number of edges and nodes is 0.84. This happens
because during crawling, 100 users were chosen at random and their follower
ego-network were crawled up to three hops. Subsequently, last 1000 tweets of
each user are retreived, each one containing a list of retweets. This list of retweets
is filtered to contain only nodes that are in the crawled set. However, the follow
relationships indicating how the tweet reached a node can be lost and as a
result, the cascades are comprised of mostly unconnected nodes. Therefore, the



10 George Panagopoulos et al.

0

25000

50000

75000

10 20 30 40 50 60 70 80 90 100

Seed Set Size

N
u

m
b

e
r 

o
f 

D
is

ti
n

c
t 

N
o

d
e

s
 I

n
fl
u

e
n

c
e

d
 i
n

 t
h

e
 T

e
s
t 

s
e

t

Method

K−cores

IMM

NETRATE PMIA

DIFFUGREEDY

DIFFUCELF

DATABASED

 SIMPATH

Fig. 2. Number of distinct nodes influenced (DNI) in the test set by the seed set of
each method. Method labels are ordered based on their average DNI.

Table 1. Average evaluation metrics and computational time for each method.

Method DNI Computational Time (sec)

DiffuGreedy 52,600 16,504
DiffuCELF 42,325 16
K-cores 31,657 632
NetRate PMIA 21,863 27,966a

IMM 1,248 104,078b

DataBased SimPath 56 96,908c

a Preprocessing took 999, NetRate 26398 and PMIA 569
b Extraction and weighing took 103898 and IMM 180
c Extraction took 2981, weighing 93898 and SimPath 29

DataBased weighing results in very few retained edges. Finally, the lack of
success of the diffusion network approach could be attributed to the substantial
mismatch with the actual follower network. Less than 1% of the inferred edges
were actual follow edges. Even though as mentioned above, there were a lot
of follow relationships in the diffusion cascades missing, it is safe to assume
that a large part of the diffusion network was not based on direct follow edges,
but rather on higher order relationships. These relationships although useful,
are not as stable as direct ones i.e. an active follower is more likely to retweet
than a follower’s active follower. The retweets in the test set might consist of
mostly followers, which caused this approach’s deficiency. The code, along with
instructions to reproduce the experiments can be found on github4.

4https://github.com/GiorgosPanagopoulos/DiffuGreedy-Influence-Maximization



DiffuGreedy 11

6 Conclusion

As network science drifts towards data-driven approaches and increasingly more
networks are accompanied by diffusion cascades, we have to reconsider our view
of many important problems. In this study, we address influence maximization
on a large scale social network. We employ multiple state-of-the-art methods,
each exploiting a different aspect of the dataset, and propose an algorithm that
outperforms them. In addition, we utilize an evaluation methodology based on
actual diffusion cascades, as a more realistic alternative to epidemic simulation
models. For future work, we plan to examine methods based on machine learning
to derive the seed set. More specifically, while numerous neural network algo-
rithms have been developed recently for influence or outbreak prediction [17, 14],
the problem of influence maximization remains unaddressed. This is a promising
path that we would like to explore further in subsequent steps.

References

1. Bourigault, S., Lamprier, S., Gallinari, P.: Representation learning for information
diffusion through social networks: an embedded cascade model. In: Proceedings
of the Ninth ACM International Conference on Web Search and Data Mining, pp.
573–582. ACM (2016)

2. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K., et al.: Measuring user
influence in twitter: The million follower fallacy. Icwsm 10(10-17), 30 (2010)

3. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In: Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp.
1029–1038. ACM (2010)

4. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Sketch-based influence maxi-
mization and computation: Scaling up with guarantees. In: Proceedings of the
23rd ACM International Conference on Conference on Information and Knowl-
edge Management, pp. 629–638. ACM (2014)

5. Du, N., Song, L., Rodriguez, M.G., Zha, H.: Scalable influence estimation in
continuous-time diffusion networks. In: Advances in neural information processing
systems, pp. 3147–3155 (2013)

6. Gallos, L.K., Song, C., Makse, H.A.: Scaling of degree correlations and its influence
on diffusion in scale-free networks. Physical review letters 100(24), 248,701 (2008)

7. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: Proceedings of the third ACM international conference on Web search
and data mining, pp. 241–250. ACM (2010)

8. Goyal, A., Bonchi, F., Lakshmanan, L.V.: A data-based approach to social influence
maximization. Proceedings of the VLDB Endowment 5(1), 73–84 (2011)

9. Goyal, A., Lu, W., Lakshmanan, L.V.: Simpath: An efficient algorithm for influence
maximization under the linear threshold model. In: Data Mining (ICDM), 2011
IEEE 11th International Conference on, pp. 211–220. IEEE (2011)

10. Jendoubi, S., Martin, A., Liétard, L., Hadji, H.B., Yaghlane, B.B.: Two eviden-
tial data based models for influence maximization in twitter. Knowledge-Based
Systems 121, 58–70 (2017)



12 George Panagopoulos et al.

11. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp. 137–146. ACM (2003)

12. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse,
H.A.: Identification of influential spreaders in complex networks. Nature physics
6(11), 888 (2010)

13. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp.
420–429. ACM (2007)

14. Li, C., Ma, J., Guo, X., Mei, Q.: Deepcas: An end-to-end predictor of information
cascades. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 577–586. International World Wide Web Conferences Steering Committee
(2017)

15. Malliaros, F.D., Rossi, M.E.G., Vazirgiannis, M.: Locating influential nodes in
complex networks. Scientific reports 6, 19,307 (2016)

16. Pei, S., Morone, F., Makse, H.A.: Theories for influencer identification in complex
networks. In: Complex Spreading Phenomena in Social Systems, pp. 125–148.
Springer (2018)

17. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: Deepinf: Modeling influence
locality in large social networks. In: Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD’18) (2018)

18. Rodriguez, M.G., Balduzzi, D., Schölkopf, B.: Uncovering the temporal dynamics
of diffusion networks. arXiv preprint arXiv:1105.0697 (2011)

19. Rodriguez, M.G., Schölkopf, B.: Influence maximization in continuous time diffu-
sion networks. arXiv preprint arXiv:1205.1682 (2012)

20. Rossi, M.E.G., Vazirgiannis, M.: Exploring network centralities in spreading pro-
cesses. In: International Symposium on Web AlGorithms (iSWAG) (2016)

21. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time informa-
tion diffusion model for social behavioral data analysis. In: Asian Conference on
Machine Learning, pp. 322–337. Springer (2009)

22. Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities
for independent cascade model. In: International Conference on Knowledge-Based
and Intelligent Information and Engineering Systems, pp. 67–75. Springer (2008)

23. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: A martin-
gale approach. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pp. 1539–1554. ACM (2015)

24. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: Near-optimal time complexity
meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pp. 75–86. ACM (2014)

25. Vespignani, A.: Modelling dynamical processes in complex socio-technical systems.
Nature physics 8(1), 32 (2012)

26. Xie, M., Yang, Q., Wang, Q., Cong, G., De Melo, G.: Dynadiffuse: A dynamic
diffusion model for continuous time constrained influence maximization. In: AAAI,
pp. 346–352 (2015)

27. Zhang, J., Liu, B., Tang, J., Chen, T., Li, J.: Social influence locality for modeling
retweeting behaviors. In: IJCAI, vol. 13, pp. 2761–2767 (2013)


