
A Specialized Interactive Data Application for EEG- Based Sleep
Studies

George Panagopoulos
University of Houston

Calhoun Rd 4849 Health and Biomedical Sciences Center,
Houston, Texas 77004
panagopoulos@uh.edu

Cara A. Palmer
University of Houston

Calhoun Rd 4849 Health and Biomedical Sciences Center,
Houston, Texas 77004

CaraA.Palmer

ABSTRACT
In this paper we present an approach for multimodal visualization
of a subject’s EEG recordings, specialized for sleep studies. A web
application was developed and a real test case from asleep study
with a clinically-anxious child (age 7, male) were exploited in order
to showcase the operation and use of the tool.
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1 INTRODUCTION
In the context of analyzing data from scientific experiments, the
need for visualization of a specific subject recordings often arises.
For a sleep study, visualizing the spectrum of each subject during
critical epochs (e.g., the transition from wake to sleep) might reveal
patterns otherwise overlooked in statistical group comparisons.
To this end, a way to derive and visualize the recordings and the
spectral power of each subject is proposed, using the open source
language R. The framework includes visualization of the time series
of each electrode, filtering in the most common EEG bands, compu-
tation of the mean spectral density for each channel during specific
epochs, as well as an interactive visualization of the brainâĂŹs
spectral activity in each channel before and after the onset of sleep.
This solution, apart from providing technical ideas as to how to
visualize the data in order to assist experts in making inferences,
also provides also base form for every experimenter to follow and
enrich, in order to produce a meaningful data app that will assist
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a researcherâĂŹs individual claims and hypothesis. It can thus be
considered a basic guide for reproducible research, in the sense that
everyone interested can use this framework after publication of a
relevant experimental study to reproduce and inspect the analysis
online.

2 IMPLEMENTATION
The data applicationwas constructed solely based on the R language
and the web framework Shiny1 . Several open source libraries were
exploited both for the processing of the EEG signals as well as for
the visualization. Below we separate between the development of
the modules that implement these two tasks.

2.1 Processing
EEG is a very complex biosignal, mainly due to the obscurity that
surrounds the human brain and its operations, as well as the nature
of the electromagnetic signal itself. More specifically, since the
signal is recorded in the surface of the scalp, noise removal needs to
take place and artifacts often need to be removed in order to retrieve
a signal that represents pure neural activity (e.g., free of muscle
movement, etc.). To this end, the user can exploit the preprocessing
in this application to filter in certain frequency bands, and estimate
the spectral density and independent component analysis.

2.1.1 Filtering. The most common transformation used in EEG
studies revolve around filtering the EEG signal based on a particular
bandwidth, in order to remove artifacts and reveal certain patterns
[4] Crucial frequencies used for EEG-based Brain Computer Inter-
faces [9] as well as for clinical EEG analysis are generally considered
[1] [3].

• Delta (0.5-3.5 Hz)
• Theta (4-7 Hz)
• Alpha (8-12 Hz)
• Sigma (12.5-16 Hz)
• Beta (16.5 âĂŞ 30 Hz)
• Gamma (30.5 âĂŞ 60 Hz)

These frequencies are the options we included in the app for the
signal filtering of each channel. The package used for this task is the
âĂĲsignalâĂİ2 package. To evaluate the correctness of the methods
in the library, we also used the respective methods in MATLAB. For
filtering, a forward and reverse passband Butterworth filter was
applied to retrieve the signal in the given bandwidth.

1http://shiny.rstudio.com/
2https://cran.r-project.org/web/packages/signal/signal.pdf
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2.1.2 Spectral Density Estimation. Computing the power of the
EEG signal in the frequency domain (e.g., spectral density) is also a
mainstream way of analyzing biosignals [9]. Findings suggest that
this step is also meaningful in the context of sleep studies [8]. The
frequencies used are the same as in the filtering process.

2.1.3 Independent Component Analysis. Apart from filtering
and spectral density estimation, we added another transformation
that has proven to enhance the efficiency of EEG signal analy-
sis [5]. Independent component analysis [7] is a computational
method that uses information theory to decompose a set of de-
pendent signals. Unlike factor analysis and PCA, which are also
common techniques to decompose a set of entangled signals into
uncorrelated components, the ICA uses higher order criteria to
determine independence. Since the EEG inherently detects signals
that are composed of the superposition of multiple signals stemmed
from intracranial sources, ICA aspires to separate the signals into
the ones produced by these initial sources. We used the package
âĂĲFastICAâĂİ3 to compute the transformation in the data app. It
should be noted that the independent components produced can-
not be exactly assigned to a specific channel, but rather, represent
the activity of one of the sources inside the brain. That said, the
correspondence between processed signal and tallied channel in
the application might differ in different runs of the app.

2.2 Visualizations
Four types of visualizations are proposed. The first is based on
the filtered signal in each epoch. The second is a boxplot of two
channelsâĂŹ signal before and after the onset of sleep. The third is
a table containing the mean spectral densities, and the last one is a
3D head showing the power spectrum in each channel before and
after falling asleep. The two first visualizations are based on the
recordings values while the latter two on their spectral power. The
data recordings we use have two 30 second epochs immediately be-
fore the onset of sleep and the ten immediately after. The sampling
rate of each recording channel was 200Hz. These are static for the
current framework, but these quantities can be defined as variables
and adjust dynamically for a different study.

2.2.1 Filtered Signal by Epoch. A simple plot of each chan-
nelâĂŹs signal, filtered in the indicated frequency. The user can
choose which channel to visualize and switch through the tabs to
change between the epochs of the signal. Package âĂĲggplot2âĂİ4
was used for that case.

2.2.2 Channel Boxplots. Boxplots are considered one of the
most efficient ways to compare distributions. In this visualization,
the user can compare the values of a channel before and after sleep
as well as between two different channels.

2.2.3 Table. A table containing the mean spectral density esti-
mation for each epoch and each channel, as well as a mean estima-
tion through channels and epochs. This serves as a manifestation
of the subjects exact spectral EEG in that particular frequency band
and allows for detailed quantitative comparisons.

3https://cran.r-project.org/web/packages/fastICA/fastICA.pdf
4http://ggplot2.org/

Figure 1: Example of Loading File.

2.2.4 3D depiction of channel spectrum. An interactive 3D head
with colored indications on each channelâĂŹs locations. The color
is determined by the mean spectral density of the frequency band
chosen by the user, amongst the respective epochs. The left one
uses the first two epochs (epochs before the onset of sleep) and the
right one uses the remaining ten (after the onset of sleep). The chan-
nels are sorted based on their mean spectral density and assigned
variations of red based on their position (the higher their order
the more vivid red becomes). The user can rotate and zoom the 3D
image using their mouse. Packages âĂĲRGLâĂİ5 and âĂĲeegkitâĂİ
6 were used for that task.

3 USE CASE
The data application is accessible in shinyapps 7 .In addition, ex-
ample datasets from a real study with EEG recordings of anxious
children and the code can be found on github8. The left panel is
devoted to the userâĂŹs input. One can choose either of the two
example datasets from above and upload using the âĂĲChoose
FileâĂİ button.

Then there is a waiting phase for the dataset to be uploaded
and the first computations to take place (filtering in the default
band which is Delta, and spectral density estimation). To perform
exploratory analysis using this visualizations, one has to start with
the less detailed visualization, which is the 3D heads. Filtering
in the delta frequency reveals no difference between before and
after sleep mean spectral density. However, filtering in the theta
frequency reveals a change in spectral activity distribution, from
central channels before sleep to frontal channels after (Figure 2)
(the color density is higher in frontal after sleep). Theta frequency
has been associated with the first stages of sleep [2]. The swift
from central to frontal activity also partially agrees with other
research [1], which states that though normally there is a decrease
in activity in anterior cingulate and orbitofrontal cortex (the frontal
channels) during NREM, this may not be the case for people with
subjective insomnia, who may often feel anxious before sleep. Since
our recordings come from anxious children, this contradiction with
the norm may indeed agree with the aforementioned findings.

5https://cran.r-project.org/web/packages/rgl/index.html
6https://cran.r-project.org/web/packages/eegkit/index.html
7https://georgepanagopoulos.shinyapps.io/sleepeeg/
8https://github.com/GiorgosPanagopoulos/Data-app-for-sleep-EEG-analysis
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Figure 2: Mean Spectral Density Before and After Sleep.

Figure 3: Mean Spectral Density by Epoch and Channel.

Diving deeper into the analysis, we can compare the exact values
of the density, using the table, to identify patterns or evaluate the
hypothesis we came up with. One can easily observe that almost all
channels suffer a steep decrease in spectral density after epoch E3,
except from Fz and F7. This also agrees with the findings suggested
above. Moreover, by observing the mean spectral density for each
epoch in Delta and Theta frequencies, we can certify that the overall
activity declines during sleep time in the low frequencies. By exam-
ining the table in other frequencies, we see that higher frequencies
are more prone to increase after sleep, which is also suggested in
[8] and buttresses some of the claims in [6]. Apart from the spectral
realm, however, we should evaluate whether there are any indica-
tions supporting the hypothesis on the values of the signal in the
time domain. We can focus on the Fz channel, which represents
mostly activity stemming from the prefrontal cortex. By comparing
the boxplots of Fz with the rest of the channels, filtered in Theta,
we can easily conclude that Fz has significantly more variance than
any other channel during this frequency (e.g., Figure 4). Note that
if we change the frequency filtering, the same comparison changes
completely (Figure 5), making clear that the activity in the frontal
lobe is dominant in theta frequencies.

The same outcome can be revealed through plotting the filtered
signal itself. Figure 5 shows Fz filtered in theta for Epoch E3 (first
of sleep) while Figure 6 and Figure 7 shows O2 and O1 (which
represent more central activity) during the same epoch.

This work is subject to several limitations. First, these examples
are based on date from one subject. Moreover, there are multiple

Figure 4: Distribution Comparison Between Fz and Oz
(Theta filtering)

Figure 5: Distribution Comparison Between Fz and Oz (Al-
pha filtering)

Figure 6: Distribution Comparison Between Fz and Oz (Al-
pha filtering)

assumptions that our exploratory analysis is based on (e.g.,Fz rep-
resents localized frontal activity, etc.). However, the purpose of
this tool is to provide detailed visualizations, for specific cases, in
order to provide specific evidence when drawing conclusions from
research studies. In case of evaluating interindividual differences
across subjects and drawing conclusions for certain populations,
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Figure 7: Plot of O1 activity during Epoch 3 filtered in Theta

Figure 8: Plot of O2 activity during Epoch 3 filtered in Theta

the data application can be adjusted accordingly to have an analo-
gous input and evaluate statistical tests, plot population differences,
etc.

4 CONCLUSIONS AND FUTUREWORK
The application is flexible enough to be enriched with further func-
tions or completely modify the ones present, as the analysis pro-
ceeds in depth. For example, deriving further transformations or
extra plots to present something possibly crucial for the outcome
of a specific study is quite feasible and can be easily added to the
data app. In this way, the current framework serves simply as a
base for relevant research, and individual researchers can use this
mechanisms to investigate their own hypotheses. This continuous
interaction between the domain expert and the computational tool
augments the focus and efficiency of the exploratory analysis, in
disjunction to studies where difficulties arise due to lack of back-
ground knowledge on the analyst side or technical skills on the
expertsâĂŹ side. Following this paradigm during an experimental
study will result at the end of the analysis to a web application
where everyone interested can reproduce the analysis step by step,
examine the results and access the exact code used to produce them.
We use R because it is open source and popular amongst quanti-
tative as well as qualitative scientists, ensuring that everyone can
rerun or adapt/edit the analysis, deriving further conclusions. This,

along with the public availability of the study’s data, will ensure
the total transparency and reproducibility of the given research,
thus massively enhancing its robustness.
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