

A Specialized Interactive Data Application for EEG-Based Sleep Studies

George Panagopoulos

Cara Palmer

Rhodes, Greece 23-June-2017

University of Houston

- > Problem
- Proposed Solution
- Case Study
- > Demo
- > Future Directions

Problem

Researchers experience problems managing sensor data (EEG)

- Insert the data to the software
 - Too many data types (.dat, .edf, .csv, .txt, .eeg, .NsN etc..)
 - Stimuli files are separate
- Subset the data to regions of interest and synchronize
- Fusing data from several sensors is hard and that limits experiments

Problem

A sensor specific software is too limited on the above.

Sensors with their own Software
Emotiv
OpenBCI
BrainVision

Tools for Data management and Visualization
Acqknowledge
Empirisoft
EEGLAB
BCI 2000
Subjectbook

Proposed Solution

- Close collaboration between a data scientist and a domain expert
- Share knowledge from both sides
- Instead of creating a static report, create a data app
- Intersection between general software tools and hypothesis driven reports

<u>Demo</u>

Experiment

- Clinically anxious vs Healthy children
- Completed one night of at-home polysomnography monitoring through an American Academy of Sleep Medicine (AASM)-accredited sleep center.
- NicoletOne Ambulatory electroencephalogram (EEG) equipment¹. 6 channels
- PSG technologists performed sleep scoring in 30 second epochs on the criteria of the AASM
- 1 minute before sleep and 5 minutes after
- Spectral power differences that can not be detected with sleep scoring software

Used R Shiny

- Processing
 - Filtering (Delta, Theta, Alpha, Sigma, Beta, Gamma)
 - Spectral Density Estimation (in filtered frequency)
 - Independent Component Analysis
- Visualization
 - Filtered Signal by Epoch.
 - Channel Boxplots.
 - Mean Spectral Density by Epoch and Channel.
 - 3D depiction of channel spectrum

- Reproducibility
- Transparency
- Interactivity
- Flexibility & Modularity
- Not a complete "black box"

Future Work

- Create a new data app or enhance the current one to perform group comparisons
- Evaluate the same methodology to similar experiments

Code and exemplary Data can be found in:

https://github.com/GiorgosPanagopoulos/Data-app-for-sleep-EEG-analysis

Thank you

gpanagopoulos @uh.edu

http://cpl.uh.edu/people/george_panagopoulos/