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ABSTRACT

Graph neural networks (GNNs) are a successful example of leverag-

ing the underlying structure between samples to perform efficient

semi-supervised learning. Though the spatial correlation of the

nodes is inherently taken into account by the models’ architecture,

structural correlations and their effects in learning remain a rela-

tively overlooked topic. In this work, we propose a new approach

to train a GNN, by separating the samples based on their structural

importance, meaning discriminating for samples that belong in a

higher tier in terms of a network centrality metric. Our proposed

method is supported by recent theoretical findings based on Ex-

treme Value Theory, that buttress the separation of extreme and

regular samples in binary classification. Essentially we split a GNN

into two parts, each trained and validated separately using extreme

and regular nodes from the observed set. We perform experiments

in the three most prevalent GNN models, using three well-known

benchmark datasets and compare the predictions of the model with

and without sample discrimination. The classification of extreme

nodes is clearly benefited, validating the relevant theory. In con-

trast, the regular nodes are undermined, despite their significantly

larger train set. Exploratory findings suggest the limited structure

contained in regular samples to be a potential reason for this.
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1 INTRODUCTION

As the success of machine learning skyrocketed the past decade

in the academic community, an increasing number of real-world

problems have been undergoing machine learning-based solutions.
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One major setback in this natural turn of events is the limited

number of labels accompanying real-world datasets or the total lack

thereof. The arduous procedure required to label a massive dataset

motivated a shift of attention towards effective semi-supervised

learning approaches. Moreover, given the abundance of relational

data, from chemical [8] to social networks [22], and from drug-

discovery [4] to fake news detection [16], semi-supervised learning

based on the graph of the input samples has been exceedingly

popular [28], whether the underlying graph is already defined [27],

or is implicitly inferred [20].

In this work, we focus on Graph neural networks (GNNs), which

have exhibited impressive results in transductive semi-supervised

classification tasks using a minuscule supervision [10]. Their im-

pressive accuracy stems from leveraging the correlation of the input

samples in the underlying graph. Numerous neural architectures

have been recently proposed to combine the structure of the graph

and the attributes of the nodes in an effective end-to-end manner

[25]. That being said, the majority of the models focus on strategies

of aggregation from multiple nodes, overlooking the structural role

of each specific node and its effect on the learning task. Although

node centrality is taken into account inherently in message passing,

its effect is unclear, since the aggregation step does not preserve the

scale of the representations’ combination [26]. On the one hand, this

serves the learning tasks, which rely on positional information i.e.

a paper’s field or a products’ category are similar to their neighbors.

On the other, highly connected nodes in realistic networks exhibit

different characteristics than regular ones, and may potentially cor-

relate with the function classes. For example, classifying famous

people in twitter based on their features and their followers may

entail a different learning procedure than classifying less famous

users, for the most classification tasks imaginable.

From a theoretical perspective, extreme value theory argues

that the distribution of the extreme samples may differ from the

bulk of the data and their dependency structure may be different,

therefore extremely rare samples, i.e. samples located far from

the bulk, should undergo learning separated from the rest. The

main assumption being that a real valued random variable 𝑋 with

distribution 𝐹 is regularly varying i.e. if there exists 𝜌 > 0 such that

∀𝑥 > 1,

1 − 𝐹 (𝜆𝑥)
1 − 𝐹 (𝑥)

𝑥→∞→ 𝜆𝜌

where the event 𝑋 > 𝑥 is less likely as 𝑥 gets large and 𝜌 is

known as the index of regular variation. If instead of the sample’s

norm, we consider the degree as the "measure of rarity", EVT can be

applied to samples that are connected with an underlying graph i.e.
input nodes to a graph learning problem. The heavy-tail assumption

of the degree matches the main property of the scale-free networks,
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which are ubiquitous for real, human-made graphs [2, 21], includ-

ing all the GNN node classification benchmarks. Each distribution

follows a heavy-tail. The vertical axis is on a log scale so that the

nodes with extreme degrees are visible. One can see that the distri-

butional tail may vary from a figure to another, to this extent one

way to compare the degree distribution of a graph to another would

be to standardize the distribution of degrees. one common stan-

dardization being the Pareto standardization: 1/
(
1 − 𝐹 (𝑥)

)
where

𝐹 is the distribution of degrees. If one considers 𝑛 nodes 𝑢𝑖 with

corresponding degree 𝑒𝑖 , 𝐹 can be approximated by its empirical

counterpart 𝐹 (𝑡) = 1

𝑛

∑𝑛
𝑖=1 1{𝑒𝑖 ≤ 𝑡}, where 1{E} corresponds to

the indicator function of the event E. Standardization and distribu-

tional comparison of degrees for different graphs will be subject of

future work.

Though there are architectures that capitalize on the node’s

centrality by analogous attention weights ([24]), assuming different

learning for each possible level of degree increases severely the

danger of overfitting. Moreover, our approach is not a new model,

but rather a different type of training that can be coupled with any

GNN architecture. To this end, we propose to split a GNN model

into two submodels, each being trained, validated, and tested using

respectively the "extreme" and "regular" nodes of the initial train,

validation and test set. The extreme and regular nodes are defined

based on the degree distribution and a threshold, which is treated

as a hyperparameter and is optimized using the validation set. We

demonstrate the effectiveness of this approach using the three most

well-known GNN architectures (GAT,GCN and GraphSAGE), and

three prevalent benchmark datasets (CORA,PubMed,Amason-

Photo). For each model, we use as a baseline the respective GNN

model with double the number of hidden parameters. Some findings

of our experiments include:

• A sufficient increase of accuracy for the extreme nodes,

throughout most of the models and datasets.

• An exploration of the relationship between the number of

samples and the samples’ edges, that potentially explains

why datasets with few extreme samples but rich structure

achieve better results then ones with more extreme samples

but lower degree.

The code to reproduce our analysis can be found online
1
.

2 BACKGROUND AND RELATEDWORK

2.1 Extreme Value Theory

Extreme value theory is the branch of statistics which focuses

on the deviations from the median (or any other centrality mea-

sure) of probability distributions. Models based on extremes tend to

learn the unusual rather than the usual. The field of application of

these models range from risk management like finance, insurance,

telecommunication or environmental science to teletraffic data and

large graph analysis. EVT provides insights on rare events.

In the univariate setting, the empirical quantity correspond-

ing to (1 − 𝑝)𝑡ℎ quantile of 𝐹 , the distribution of a random vari-

able 𝑋 , for a given probability 𝑝 of exceedance, is 𝑥𝑝,𝑛 = inf{𝑥 ∈
R, 1𝑛

∑𝑛
𝑖=1 1{𝑋𝑖 ≥ 𝑥} ≤ 𝑝} for large up to moderate values of 𝑝 .

Nonetheless, as 𝑝 gets small the finite dataset D𝑛 = {𝑋𝑖 }𝑛𝑖=1 is not

1
https://github.com/GiorgosPanagopoulos/Extreme-GNNs

guaranteed to provide valid and non degenerate solution 𝑥𝑝,𝑛 , un-

less one relies on EVT to estimate large quantiles of a distribution.

In this way, EVT boils down to studying the distribution of maxima

as a Generalized Extreme Value (GEV) distribution, that is to say an

element of the Gumbel, Fréchet or Weibull parametric families. The

main assumption is the existence of two sequences {𝑎𝑛, 𝑛 ≥ 1} with
𝑎𝑛 > 0, {𝑏𝑛, 𝑛 ≥ 1} and a non-degenerate cumulative distribution

function 𝐺 such that

lim

𝑛→∞
𝑛P

(
𝑋 − 𝑏𝑛

𝑎𝑛
≥ 𝑥

)
= − log𝐺 (𝑥) (1)

where 𝑥 is any continuity point of the domain of 𝐺 .

In the case where assumption (1) is fulfilled, F is said to be in
the domain of attraction of 𝐺 . The tail behavior of 𝐹 boils down to

the distribution of 𝐺 . Up to rescalling, 𝐺 (𝑥) = exp

(
− (1 + 𝛾𝑥)−

1

𝛾
)

where 1 + 𝛾𝑥 > 0, 𝛾 ∈ R. By convention, (1 + 𝛾𝑥)−
1

𝛾𝑥 = exp(−𝑥)
for 𝛾 = 0. The shape of the tail is controled by the sign of 𝛾 .

2.2 Graph Neural Networks

Graph Neural Networks (GNN) are a neural architecture that uti-

lizes the underlying relations between the input samples of the data,

which form a graph, to perform semi-supervised learning with mi-

nuscule training labels. Let G = (V, E) be a graph with a set of

nodes V with |V| = 𝑛 ≥ 2 and edges E with |E | = 𝑚 ≤ 𝑛(𝑛 − 1)
describing the set of edges. An edge between node 𝑢 and 𝑣 are

depicted as 𝑒𝑢,𝑣 . Our setting is binary node classification, in which

a label 𝑌𝑢 ∈ {−1, 1} is associated to each node 𝑢, who is asso-

ciated with a feature vector 𝑋𝑢 ∈ R1×𝑑 where 𝑑 is the number

of features of each node, forming a feature matrix 𝑋 ∈ R𝑛×𝑑
and a label vector 𝑌 ∈ R𝑛×1. The graph can be described in the

form of its adjacency matrix 𝐴 ∈ R𝑛×𝑛 and normalized adjacency

𝐴 = 𝐷−1/2 (𝐴 − 𝐼𝑛)𝐷−1/2
where 𝐼𝑛 is the identity matrix and 𝐷 is

the degree matrix of the graph [5]. Overall, a GNN architecture

consists of an initial aggregation step, where the features of a node’s

neighbors are aggregated and combined with a weighted non-linear

formula. In one of the earliest GNNs, Graph Convolutional Net-

work [13], the aggregation was performed using the adjacency of

the graph 𝐻1 = 𝑅𝑒𝐿𝑈 (𝐴𝑋𝑊0)). Here𝑊0 ∈ R𝑓 𝑥𝑑 is a matrix of

learnable parameters. This combination is one hidden layer of the

neural network.𝐻1 ∈ R𝑛×𝑑 can then be passed into another hidden

layer 𝐴𝐻1𝑊1, combining information from two-hop neighbors of

the node using a new set of parameters𝑊1. Once the layers have

achieved the desired depth, the representation of the final hidden

layer can be inserted into an output layer such as a softmax func-

tion to derive a node’s probability to belong in a certain category.

This message passing framework is more clear in GraphSAGE [9],

where the hidden representation of each node 𝑢 is given by a sim-

ple aggregation of its neighbors’ 𝑁 (𝑢) representations, such as the

mean. Similar to GCN, GraphSAGE can built deeper models with

more parameters. The final model we will use in our experiments

is the Graph Attention Network [23], where the aggregation step

is similar to GraphSAGE, but apart from the parameters of the

hidden layer, the aggregation of the neighbors are weighted by

an attention parameter 𝛼 , different for each edge, learnt through

multiple epochs.
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These are the most well-known GNN architectures, all of whom

serve as obligatory benchmarks of comparison for a newly proposed

method. That being said, numerous architectures have been pro-

posed in recent years that excel in node classification. Specifically

jumping knowledge networks [27] expands the message passing by

including nodes that may not be in structural vicinity of the node

but whose representations affect the node in terms of statistical

influence. A GNN with ARMA layers [3] passes the input features

through an ARMA filter of a certain depth, simultaneously with the

graph convolution, in order come up with more robust representa-

tions. PPNP [14] uses a personalized page rank to identify nodes

that should effect a node during the message passing, and is trained

end to end by parameterizing the power iteration of pagerank.

3 METHODOLOGY

Overall, our methodology follows a specific framework, depicted

in Figure (1). Initially, if the dataset contains predefined train-

validation-test splits i.e. the CORA dataset, we use them. If not,

we split the dataset in half at random, resembling an observed and

a test set, similar to the literature [19]. The visible set is broken

into the train set comprising of 20 nodes per class as is common

for the datasets we employ, and the rest of the samples are kept

for the validation set. The nodes in the train, validation, and test

set are separated to extreme and regular, based on their degree

and a hyperparameter 𝑝 that defines the threshold above which

a node is considered an extreme sample. These serve as input to

three different instances of the same GNNmodel. The Extreme-GNN
(EGNN ) instance is trained and validated in the extreme nodes of

the observed set while the Regular-GNN (RGNN ) in the respective

regular nodes, as described in figure (1).

The baseline GNN consists of a hidden layer that is double the
size of EGNN ’s and RGNN ’s, hence the number of parameters in

the baseline GNN and in its Extreme-Regular version are equal.

The baseline is trained and validated in the observed part of the

network, in the same manner as in the literature.

Independent to the GNN employed, we can formally define this

split as two separate risk minimization tasks, run in parallel. In the

general setting, (𝑢,𝑌 ) is a random pair with unknown joint distri-

bution where 𝑢 is a random node in the graph with corresponding

label 𝑌 ∈ {−1, 1}. The goal is to obtain a classifier 𝑔 → {−1, 1}
which minimizes the classification risk 𝑅(𝑔) def

= minP (𝑔(𝑢) ≠ 𝑌 ).
Using the law of total probability, the classification risk can rewrite

as:

P (𝑔(𝑢) ≠ 𝑌 | 𝑒 (𝑢) > 𝑡) P (𝑒 (𝑢) > 𝑡) +
P (𝑔(𝑢) ≠ 𝑌 | 𝑒 (𝑢) ≤ 𝑡) P (𝑒 (𝑢) ≤ 𝑡) , (2)

where 𝑡 > 0 is a threshold arbitrarily large.

Although, because of the extremely small order of magnitude

of P (𝑒 (𝑢) > 𝑡) and of its empirical counterpart, nothing guaran-

tees that the minimizer of the empirical risk on all nodes will

be optimal on nodes {𝑢 : 𝑒 (𝑢) > 𝑡}. Therefore we follow the

urge of [11, 12] to minimize two risks following the decomposi-

tion given by Equation (2): one dedicated to the extreme nodes

𝑅>𝑡 = P (𝑔(𝑢) ≠ 𝑌 | 𝑒 (𝑢) > 𝑡) and one dedicated to the common

nodes : 𝑅≤𝑡 = P (𝑔(𝑢) ≠ 𝑌 | 𝑒 (𝑢) ≤ 𝑡). Sorting the training nodes

by decreasing order of number of edges, we introduce the order sta-

tistics 𝑢 (1) > . . . > 𝑢 (𝑛) and we denote by 𝑌(𝑖) the corresponding

sorted labels. Let 𝜏 > 0 represent a small fraction corresponding to

the proportion of considered extreme nodes, and set 𝑘 = ⌊𝑛𝜏⌋ such
that 0 < 𝑘 ≪ 𝑛. We define two risks namely 𝑅>𝑘 and 𝑅≤𝑘 ,

𝑅>𝑘 (𝑔) =
1

𝑘

𝑘∑
𝑖=1

1{𝑔(𝑢 (𝑖) ) ≠ 𝑌(𝑖) },

𝑅≤𝑘 (𝑔) =
1

𝑛 − 𝑘

𝑛∑
𝑖=𝑘+1

1{𝑔(𝑢 (𝑖) ) ≠ 𝑌(𝑖) }.

to learn a suitable representation to perform node classification

on each dedicated set of nodes.

4 EXPERIMENTS

To evaluate the advantage of the proposed approach, we measure

the Area Under the ROC Curve [6] of the baseline model’s predic-

tions for the extreme and the regular nodes of the test set separately.

Subsequently, we compute the AUC of the EGNN in the extreme

nodes of the test set and compute the difference with the aforemen-

tioned AUC of the baseline in the same nodes. The same difference

is evaluated for RGNN and the regular nodes in the test set, as

is noted in Figure (1). The aforementioned hyperparameter 𝑝 is

optimized using the same differences in the validation set.

This procedure is applied in three of the most common GNN

benchmark datasets, the CORA and PubMed citation networks

[7] and the Amazon-Photo co-purchase network [15]. In terms of

methods, we test the three most well-known GNN architectures:

GCN [13], GAT [23] and GraphSAGE [9]. The size of the hidden

layers is set to 64 and the learning rate to 0.01, similar to [19].

As mentioned above, the theoretical properties of EVT have been

analyzed in the context of binary classification. Since the afore-

mentioned datasets are multi-class problems, we transform them in

binary classification using a one-vs-all classification , in a similar

way as in [11]. We use AUC instead of plain accuracy for evaluation,

because the final class distribution is imbalanced.

The CORA dataset consists of 2485 nodes and 5069 edges, with

5% of the dataset available for training. The results in 2 showcase

the difference in AUC between the EGNN and the baseline (red

bar) and the RGNN and baseline (blue bar). All models indicate a

positive AUC gain over the extreme nodes and a negative over the

regular ones. EGAT and ESAGE surpass the 10% AUC gain in the

extreme region, a possible reason being that the baseline could not

generalize to the extreme nodes in the test set due to insufficient

training samples. We also see a tradeoff between AUC in the two

regions, as the one increases when the other diminishes. In contrast,

PubMed, which is larger (19717 nodes and 44324 edges), indicates

a significantly smaller gain. This contradiction takes place due to

the PubMed’s scale and minuscule label rate. More specifically,

Figure (5a) shows the number of train samples for CORA and (5b)

for PubMed respectively, broken in extreme and regular samples

for all examined thresholds 𝑝 . One can see that though PubMed is

almost 10 times larger, it contains half the train samples of CORA,

which renders the extreme nodes of the train set as few as 6. A train

set of such scale does not suffice for the extreme models to learn.

On the other hand, this affects the distribution of the regular nodes

as well, as their test set is diminished and hence the prediction
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Figure 1: The scheme of the methodology. The network as binary-class labels (color of the node) and is split in observed (red

background) and test set (blue background) and in extreme-regular (big-small node). Few of the extreme nodes in the observed

set are passed as training input to EGNN, the rest of the extremes are used for validation. The same happens with the regular

nodes for the RGNN. The BaseLine receives the combined train set of EGNN and RGNN, and is validated with the rest of the

observed set. The AUC of EGNN is computed over the extreme nodes of the Test set and the AUC of RGNN respectively with

the regular nodes. The baseline model is evaluated in both.
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Figure 2: AUC gain difference between the baseline and extreme-regular version for CORA.

becomes easier. Most notably, GCN achieves a positive gain in both

types of nodes ( 1% and 3%) (3b).

Similarminuscule differences can be seen in theAmazon-Photo

dataset for the regular and extreme GAT in 4a (−1.5% and 0.7%

respectively). The differences become more prevalent for the next

two models, where the difference between the regular GAT and

baseline, surpasses the respective difference for the extreme GNN.

In an attempt to explain this difference, we dive deeper into the

structure of the input samples.
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Figure 3: AUC gain difference between the baseline and extreme-regular version for PubMed.
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Figure 4: AUC gain difference between the baseline and extreme-regular version for Amazon-Photo.

GNNs rely on the structure of the graph as much as they rely

on supervision. This is also prevalent in our results, as the extreme

nodes are classified correctly more frequently than the regular

ones. Specifically, throughout all experiments, RGNN surpasses

EGNN only in one case in PubMed (Figure (3c) being a mere 0.3%

difference. This happens despite EGNN being trained in a much

smaller training set, in terms of the number of samples, as indi-

cated by Figure (5). A possible reason is that the models trained

on extreme nodes have access to more structural information, in

terms of number of edges, as shown in Figure (6). Note that since

the Amazon-Photo train/test split is not predefined, we perform

10 times the sampling mentioned above and showcase all values

with boxplots. The total size of the train set is predetermined and

stable, hence the number of nodes of the extreme and regular is

complementary throughout all figures in (5).

In these figures, we see that as the threshold increases the dif-

ference between the sample size of EGNN and RGNN increases

significantly, hence the former undergoes much less supervision.

However, the structure contained in these samples i.e. edges of

the nodes, follows a reverse pattern, as the extreme samples by

definition have access to more structure than the regular ones. This

pattern is more obvious in the citation datasets (5) where the ex-

treme nodes have considerably more edges then the regular ones.

In contrast, in the Amazon-Photo, the network’s density (7487

nodes/119043 edges) diminishes the structural differences between

the regular and the extreme nodes i.e. the number of regular sam-

ples’ edges reach the extreme’s around 𝑝 = 80. This has a prevalent

effect in the results, as the regular GNNs exhibit their greater loss

compared to the baseline for this dataset.

Overall, the aforementioned power-law of the degree distribution

[1] plays a crucial role in the accuracy of the samples and is the

main practical motivation behind the use of EVT h in the context of

GNNs. Another possible reason for the gain in the extreme nodes

would be that as 𝑝 increases, the extreme samples of the test set
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Figure 5: The number of extreme and regular nodes that the train set contains in every degree threshold 𝑝.
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Figure 6: The total number of edges belonging to extreme and regular nodes in the train set, for all degree thresholds 𝑝.

decreases. Still, the extreme test set remains considerably larger

and more diverse than the extreme train set, and should suffice for

a concrete evaluation.

5 CONCLUSION

In this work, we examined the use of node discrimination in the

context of GNN. This method has been examined for binary clas-

sification of non-structured input and is theoretically grounded

from the Extreme Value Theory. We proposed a similar approach

to separate the observed and test samples of a GNN based on their

degree in extreme and regular. Our results indicate that the split

can benefit the extreme samples. While we observed a case where

this separation was beneficial for both types of nodes e.g. GCN at

PubMed, the regular samples tend to suffer a loss, despite having

relatively bigger train set.We examined this pattern further and

attributed the increase in the extreme samples’ accuracy to the num-

ber of edges associated with each sample. This means that when

regular and extreme nodes do not have substantial difference in the

number of edges i.e. the dataset is dense such as Amazon-Photo,

the separation is not beneficial. We hope that our study, though

inaugural, encourages future works to leverage further the struc-

tural role of the samples towards improving semi-supervised graph

learning. In the future, we plan to examine automatic adjustment

of the number of hidden parameters based on the ratio of extremes

to regular nodes, as well as a node’s influence on other nodes as a

structural criterion [17, 18].

6 ACKNOWLEDGEMENTS

The authors would like to thank Konstantinos Skianis for the in-

sightful discussions on the initial stages of the project.



Graph Neural Networks with Extreme Nodes Discrimination DL4G ’20, Aug 22–27, 2020, San Diego, Cal

REFERENCES

[1] Lada A Adamic, Rajan M Lukose, Amit R Puniyani, and Bernardo A Huberman.

2001. Search in power-law networks. Physical review E 64, 4 (2001), 046135.

[2] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science 286, 5439 (1999), 509–512.
[3] Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi, and Lorenzo Livi.

2019. Graph neural networks with convolutional ARMA filters. arXiv preprint
arXiv:1901.01343 (2019).

[4] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas

Blaschke. 2018. The rise of deep learning in drug discovery. Drug discovery today
23, 6 (2018), 1241–1250.

[5] Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. Number 92.

American Mathematical Soc.

[6] Jesse Davis and Mark Goadrich. 2006. The relationship between Precision-Recall

and ROC curves. In Proceedings of the 23rd international conference on Machine
learning. 233–240.

[7] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with

PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).
[8] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org,

1263–1272.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[10] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning

on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).
[11] Hamid Jalalzai, Stephan Clémençon, and Anne Sabourin. 2018. On binary classi-

fication in extreme regions. In Advances in Neural Information Processing Systems.
3092–3100.

[12] Hamid Jalalzai, Pierre Colombo, Chloé Clavel, Eric Gaussier, Giovanna Varni,

Emmanuel Vignon, and Anne Sabourin. 2020. Heavy-tailed Representations, Text

Polarity Classification & Data Augmentation. arXiv preprint arXiv:2003.11593
(2020).

[13] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-

dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[15] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Dif-

fusion Improves Graph Learning. In Advances in Neural Information Processing
Systems. 13333–13345.

[16] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M

Bronstein. 2019. Fake news detection on social media using geometric deep

learning. arXiv preprint arXiv:1902.06673 (2019).
[17] George Panagopoulos, Fragkiskos D Malliaros, and Michalis Vazirgianis. 2020.

Influence Maximization Using Influence and Susceptibility Embeddings. In Pro-
ceedings of the International AAAI Conference on Web and Social Media, Vol. 14.
511–521.

[18] George Panagopoulos, Fragkiskos D Malliaros, and Michalis Vazirgiannis. 2019.

Multi-task Learning for Influence Estimation and Maximization. arXiv preprint
arXiv:1904.08804 (2019).

[19] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[20] Otilia Stretcu, Krishnamurthy Viswanathan, DanaMovshovitz-Attias, Emmanouil

Platanios, Sujith Ravi, and Andrew Tomkins. 2019. Graph Agreement Models for

Semi-Supervised Learning. In Advances in Neural Information Processing Systems.
8710–8720.

[21] Steven H Strogatz. 2001. Exploring complex networks. nature 410, 6825 (2001),
268–276.

[22] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. 817–826.

[23] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[24] Jun Wu, Jingrui He, and Jiejun Xu. 2019. Net: Degree-specific graph neural

networks for node and graph classification. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 406–
415.

[25] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems (2020).

[26] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[27] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. arXiv preprint arXiv:1806.03536 (2018).
[28] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting semi-

supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861
(2016).


	Abstract
	1 Introduction
	2 Background and Related work
	2.1 Extreme Value Theory
	2.2 Graph Neural Networks

	3 Methodology
	4 Experiments
	5 Conclusion
	6 Acknowledgements
	References

