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» Brain Computer Interfaces

» Subject-subject generalization
» Multi-task learning

» Experiment

» Future work
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Brain Computer Interfaces

« Medical imaging devices, typically EEG-based

* Monitor the activity of certain areas of the brain

« Map certain recording patterns to specific activities (Active)

« Classify some aspect of the human’s cognitive state (Passive)

EEG signal Classification

Pattern
Recognition
Algorithm

www.bio-signal.com
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Commercial BCI

e BCl technology getting out of the lab
* Wireless headsets with EEG sensors and cool design

Advantages Disadvantages

* Economic
» Easy to use : * Limited data

 Application friendly "\ * Noisy signals
* Broader audience
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Subject-adaptive Algorithms

Train one specific model for each subject

Problems:
* Need subject-specific training
The algorithms adapt to noise
* Prior knowledge not utilized
« Knowledge extraction through different models, to

derive general conclusions

5/17



s s Subject-invariant Algorithms

Train one model with data from all subjects (pooled)

Problem:Neural signals exhibit variability across brains

Normalized Gamma Distributions
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Multi-task Learning (MTL)

Learning on training tasks Is  performed
simultaneously to capture intrinsic relatedness and

share knowledge.

Advantages:
* Theoretically proved to increase accuracy in new

tasks
 Extracts common patterns from all tasks

* Already used In clinical neuroimaging studies to
overcome inter-subject variability issues
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Regression with group sparsity constraint on the
coefficients K of all tasks T

T K
1
minﬁz J(Xe, Wi, Yo) + 7\2|Wk|2

wl o wK
Xt € RNs*K y. € RNs W = DU
wi o wk

Obozinksi, Taskar and Jordan, 2006
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Difference in Coefficients

Each approach yields a different W:

5 Features

Subject Multi-task Subject Invariant
Adaptive S (pooled)

4 Subjects
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Bayesian estimation of the coefficients prior distribution, which
is shared for all subjects

p(W, X) Y)N H’{:l p(yt' Xti Wt)p(wt) ’ p(Wt)NN(‘U,, Z) ;V teT

min _ZZ“tht Yt|| + = Z(Wt wIz=t(w, — u)+—l0gdet(2)
We, W2 O

A coefficient vector w,, for a new subject is sampled from N(u, Z).

Alamgir, Grosse-Wentrup and Altun, 2010
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Carnegie Mellon Experiment
= 9 subjects
= Ten 2-minute sessions with MOOC videos
= Self-classified levels of confusion for each session
= (Classes: Confused or not

Berkeley Experiment
= 30 subjects
=  One 5-minute session

= Two types of stimuli during session
= Math, memorizing colors, think of items

= Listen to music, watch video ads, relax
= (Classes: Mental activity or relaxation

Datasets
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10-fold subject cross validation

CMU (9 subjects) Berkeley (10 Subjects) Berkeley (30 subjets)
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Also used: MLP, RBF NN, LVQ, KNN, XGBOOST and Ensemble of NN




Feature Selection
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Algorithms

Consistent pattern extraction agreeing with the field's literature

Pooled Multi-task
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Conclusion

Multi-task  algorithms are more robust than
conventional pooled approaches to the subject
generalization problem

*Steady or increase accuracy as the number of
subjects increases

*Consistent feature selection

This may apply to all studies that include humans
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Address session-session generalization:

« Compare fully adaptive and multi-task learning
approaches to same subject recordings

« Use the models derived for each subject in MTL to
new recordings of that subject

Sequential multi-task learning

 Exploit the sequential nature of the data to
achieve more accuracy results
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it To reproduce the experiment

Pipeline (R and MATLAB) with run instructions in:
nttps://dithub.com/GiorgosPanagopoulos/Multi-task-
_earning-for-Commercial-Brain-Computer-Interfaces



https://github.com/GiorgosPanagopoulos/Multi-task-Learning-for-Commercial-Brain-Computer-Interfaces
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Thank you

gpanagopoulos@uh.edu

https.//glorgospanagopoulos.github.io
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